112 research outputs found

    Cancer cells exploit an orphan RNA to drive metastatic progression.

    Get PDF
    Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies

    Transcriptome analysis of Thapsia laciniata rouy provides insights into terpenoid biosynthesis and diversity in apiaceae

    Get PDF
    Thapsia laciniata Rouy (Apiaceae) produces irregular and regular sesquiterpenoids with thapsane and guaiene carbon skeletons, as found in other Apiaceae species. A transcriptomic analysis utilizing Illumina next-generation sequencing enabled the identification of novel genes involved in the biosynthesis of terpenoids in Thapsia. From 66.78 million HQ paired-end reads obtained from T. laciniata roots, 64.58 million were assembled into 76,565 contigs (N50: 1261 bp). Seventeen contigs were annotated as terpene synthases and five of these were predicted to be sesquiterpene synthases. Of the 67 contigs annotated as cytochromes P450, 18 of these are part of the CYP71 clade that primarily performs hydroxylations of specialized metabolites. Three contigs annotated as aldehyde dehydrogenases grouped phylogenetically with the characterized ALDH1 from Artemisia annua and three contigs annotated as alcohol dehydrogenases grouped with the recently described ADH1 from A. annua. ALDH1 and ADH1 were characterized as part of the artemisinin biosynthesis. We have produced a comprehensive EST dataset for T. laciniata roots, which contains a large sample of the T. laciniata transcriptome. These transcriptome data provide the foundation for future research into the molecular basis for terpenoid biosynthesis in Thapsia and on the evolution of terpenoids in Apiaceae.Damian Paul Drew, Bjørn Dueholm, Corinna Weitzel, Ye Zhang, Christoph W. Sensen and Henrik Toft Simonse

    BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    Get PDF
    BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization of their bioactive components, identification and functional characterization of the corresponding biosynthetic pathways, and construction of Gram-positive bacterial cell factories producing phenolic compounds. Further activities included optimization of polyphenol extraction methods from bacterial cultures, scale-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project
    corecore